GUIA Nº 2

Funciones

Parte Práctica

Ejercicio 1: Dados los siguientes gráficos de funciones. Analizar:

- a) Dominio
- b) Imagen
- c) Intersecciones con los ejes
- d) Asíntotas Horizontales
- e) Asíntotas verticales
- f) Conjunto de positividad y de negatividad
- g) Continuidad
- h) Puntos críticos
- i) Crecimiento y decrecimiento
- j) Máximos y mínimos
- k) Puntos de inflexión
- 1) Concavidad y convexidad

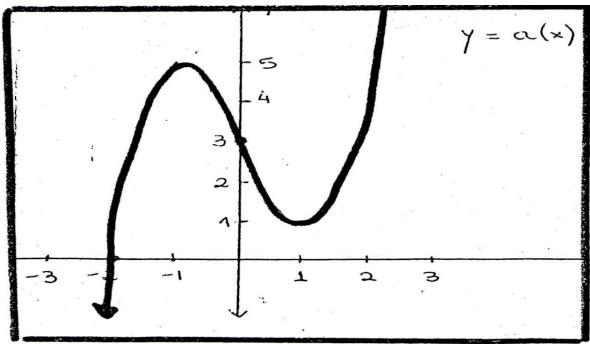
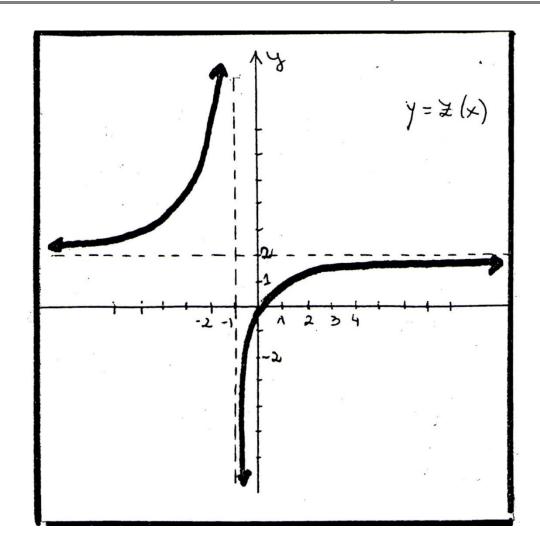



Gráfico 2

Grafico 3

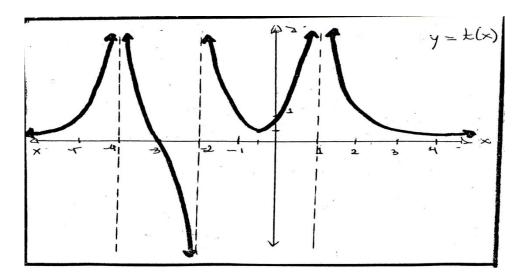
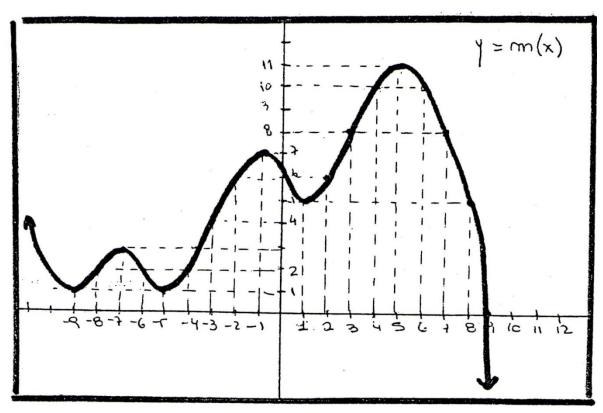
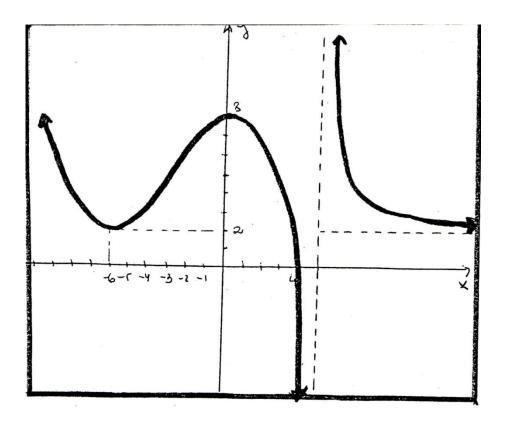
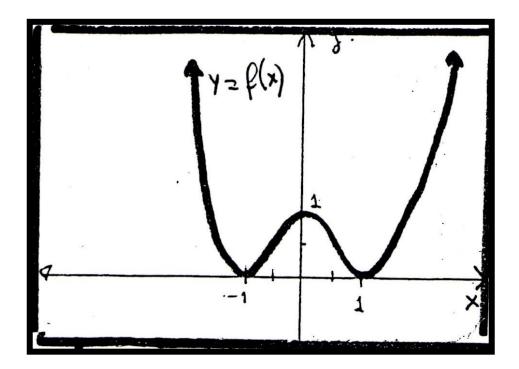


Gráfico 4

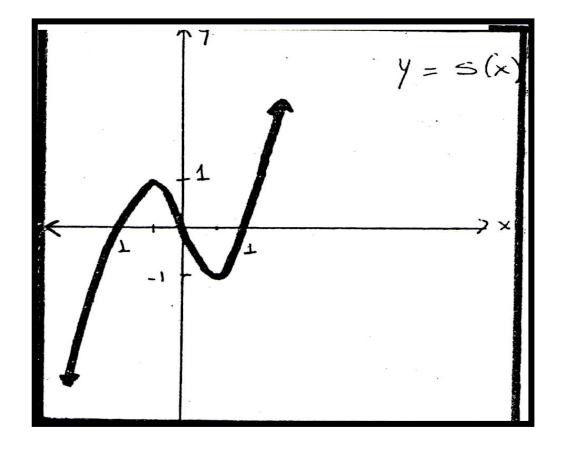

Gráfico 5

Gráfico6

Gráfico 7

<u>Ejercicio 2</u>: De ciertas funciones conocemos los datos, a partir de ellos construye las gráficas

- 1) Dm = $R \{1\}$; Img= R; \cap eje x= (-3; 0) y (2; 0); \cap eje y = (0; 1); $C^+ = (-3;1) \cup (2;+\infty)$ y $C^- = (-\infty;-3) \cup (1;2)$; No posee A. Horizontal Asíntota Vertical en x= 1. La función no es continua $C^{\uparrow} = (-\infty;-2) \cup (0;1) \cup (1;+\infty)$ y $C^{\downarrow} = (-2;0)$ Maximo en (-2; 3). Mínimo en (0;1) P. I. (-1; 2). $C^{\cup} = (-1;1)$ y $C^{\cap} = (-\infty;-1) \cup (1;+\infty)$
- 2) Dm = R; Img=R; \cap eje x= (-4;0), (2;0) y (4;0) \cap eje y = (0;-1); $C^{+} = (-\infty;-4) \cup (2;4)$ y; $C^{-} = (-4;2) \cup (4;+\infty)$ No posee A. Horizontal No posee Asíntota Vertical. La función es continua $C^{\uparrow} = (-2;0) \cup (1;3)$ y $C^{\downarrow} = (-\infty;-2) \cup (0;1) \cup (3;+\infty)$ Maximo en (0;-1) y (3;3) Mínimo en (-2;-3) y (1;-3). P. I. (-1;-2), $\left(\frac{1}{2};-2\right)$ y (2;0). $C^{\cup} = (-\infty;-1) \cup \left(\frac{1}{2};2\right)$ y $C^{\cap} = (-1;\frac{1}{2}) \cup (2;+\infty)$
- 3) Dm = $R \{6\}$; Img= R; \cap eje x= (-3;0), (2;0) y (5;0) \cap eje y = (0;3); $C^+ = (-3;2) \cup (5;6)$ y; $C^- = (-\infty;-3) \cup (2;5) \cup (6;+\infty)$ No posee A. Horizontal Posee Asíntota Vertical en x = 6. La función no es continua $C^{\uparrow} = (-\infty;-1) \cup (3;6) \cup (6;7)$ y $C^{\downarrow} = (-1;3) \cup (7;+\infty)$. Maximo en (-1;4) y (7;-2) Mínimo en (3;-2). P. I. (1;1). $C^{\circ} = (1;6)$ y $C^{\cap} = (-\infty;1) \cup (6;+\infty)$
- 4) Dm = $R \{1\}$; Img= R; \cap eje x= (-1; 0) y (2;0) \cap eje y = (0; -1) $C^+ = (1;2)$ y; $C^- = (-\infty;1) \cup (2;+\infty)$. No tiene A. Horizontal . A. Vertical en x = 1 La función no es continua. $C^{\uparrow} = (-\infty;-1)$ y $C^{\downarrow} = (-1;1) \cup (1;+\infty)$ Maximo (-1; 0). Mínimo no tiene. P. I. no tiene $C^{\circ} = (1;+\infty)$ y $C^{\circ} = (-\infty;1)$
- 5) Dm = $R \{-1\}$; Img= $(1;+\infty)$; \cap eje x= no tiene \cap eje y = (0;3) $C^+ = R \{-1\}$ y; $C^- = \{\}$ A. Horizontal en y = 1 hacia la izquierda. A. Vertical en x = -1. La función no es continua $C^{\uparrow} = (-\infty;-1) \cup (1;3) \cup (5;+\infty)$ y $C^{\downarrow} = (-1;1) \cup (3;5)$ Maximo en (3;4). Mínimos en (1;2) y (5;2) . P. I. en (2;3) y (4;3) $C^{\cup} = (-\infty;-1) \cup (-1;2) \cup (4;+\infty)$ y $C^{\cap} = (2;4)$

- 6) Dm = $R \{0\}$; Img= $(-\infty; -2] \cup [2; +\infty)$. \cap eje x= no tiene \cap eje y = no tiene $C^+ = (0; +\infty)$ y $C^- = (-\infty; 0)A$. Horizontal no tiene. A. Vertical en x = 0 La función no es continua. $C^{\uparrow} = (-\infty; -2) \cup (2; +\infty)$ y $C^{\downarrow} = (-2; 0) \cup (0; 2)$ Maximo (-2; -2) Mínimo (2; 2). P. I. no tiene. $C^{\circ} = (0; +\infty)$ y $C^{\circ} = (-\infty; 0)$
- 7) Dm = $R \{-1\}$; Img= $R \{3\}$; \cap eje x= (0; 0) \cap eje y = (0; 0) $C^+ = (-\infty; -1) \cup (0; +\infty)$ y $C^- = (-1; 0)$ A. Horizontal en y= 3 A. Vertical en x = -1. La función no es continua $C^{\uparrow} = R - \{-1\}$ y $C^{\downarrow} = \{\}$ Maximo no tiene Mínimo no tiene P. I. no tiene. $C^{\circ} = (-\infty; -1)$ y $C^{\circ} = (-1; +\infty)$
- 8) Dm = R; Img= $[0;+\infty)$; \cap eje x= (-2; 0) y (2;0) \cap eje y = (0; 2) $C^+ = R$ y $C^- = \{ \}$. A. Horizontal no posee . A. Vertical no posee La función es continua. $C^{\uparrow} = (-2;0) \cup (2;+\infty)$ y $C^{\downarrow} = (-\infty;-2) \cup (0;2)$ Maximo en (0;2) Mínimo en (-2;0) y (2;0). P. I. en (-1;1) y (1;1) $C^{\circ} = (-\infty;-1) \cup (1;+\infty)$ y $C^{\circ} = (-1;1)$

Ejercicio 3: Función definida por partes

1)
$$f_1(x)$$
 $\begin{cases} -2 & 0 \le x \le 1 \\ 2x & 1 < x \le 4 \end{cases}$ 2) $f_2(x)$ $\begin{cases} 2x+3 & x < \frac{1}{2} \\ 2 & \frac{1}{2} \le x < 2 \\ 1 & x \ge 2 \end{cases}$ 3) $f_4(x)$ $\begin{cases} x+2 & x \le -1 \\ -x & -1 < x \le 1 \\ 3x-4 & 1 < x \end{cases}$

4)
$$f_5(x)$$
 $\begin{cases} -x+2 & x \ge 1 \\ -x-1 & x \ \end{cases}$ 5) $f_6(x)$ $\begin{cases} 2 & -3 \ \langle x \le 1 \\ 3-x & 1 \ \langle x \le 3 \\ x+1 & x \in (3;+\infty) \end{cases}$ 6) $f_5(x)$ $\begin{cases} 2-3x & x \in (-3;1] \\ 5 & x \in (1;3) \\ x-3 & x \ge 3 \end{cases}$

